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Abstract The flux-force linear relationship is a basic building block in the devel-
opment of irreversible thermodynamics near equilibrium. Here, we explore the fate
of this relationship near a steady state in a finer detail by partitioning the fluxes and
the forces into time-independent and time-dependent components. To this end, we
use a master equation approach without assuming the condition of detailed balance.
The connection of the flux-force components with various state functions and path
functions provides a detailed picture of the variations of such quantities in terms of
the deviation of probabilities from the steady state. Pilot calculations on an exactly-
solvable case furnish insights into the energy-balance mechanism for non-equilibrium
systems, revealing additionally how an out-of-equilibrium scenario can be favorable
in realizing a minimized free energy state.

Keywords Irreversible thermodynamics · Stochastic process · Steady state

1 Introduction

The field of irreversible thermodynamics, starting with the pioneering work of Onsager
on the reciprocal relations in coupled irreversible processes close to equilibrium [1,2],
have expanded rapidly over the years [3–6]. In the last two decades, a major focus
has been on small systems where fluctuations play a vital role [7–9]. The kinetic and
thermodynamic descriptions of such stochastic systems are shown to be satisfactorily
provided by a master equation approach [10,11]. The key quantity in the characteriza-
tion of the non-equilibrium thermodynamic behavior of a system is the total entropy
production rate (EPR) [4,5]. Its primary role is to indicate the nature of a steady state
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(SS). A vanishing total EPR in the SS means the state is a true thermodynamic equilib-
rium (TE), arising in a closed system. On the other hand, a positive constant value of
total EPR refers to a non-equilibrium steady state (NESS) [12] that can emerge in an
open system. The total EPR is generally expressed as a sum of products of fluxes and
their corresponding forces [3,4]. Taking a linear flux-force relationship, one studies
the variation of total EPR near a TE. This obviously results in a quadratic form of total
EPR in either the flux or the force, close to a TE.

With the above background, here we like to investigate how the linear dependence
of fluxes on the conjugate forces gets modified near a SS where condition of detailed
balance (DB) is violated. For an in-depth understanding of this issue, we split the
fluxes and the corresponding forces into time-independent and time-dependent parts.
This is similar in spirit to the partitioning of the total EPR into adiabatic and nonadia-
batic contributions [13,14], obtained by splitting the force part, that produces a clear
separation of a system’s relaxation to a SS and subsequent sustenance of that SS [15].
The interrelations among the various parts of the flux and the force are thoroughly
analyzed. This kind of partitioning provides a detailed understanding of the generic
behavior of total EPR near a SS. More importantly, as a result of this splitting, the
dependence of various state and path functions on deviations from SS probability
distribution (PD) and DB gets revealed nicely.

2 Components of flux and force and their interrelations

For a stochastic system described by a Markov process, the master equation is written
as [16]

ṗi =
∑

j

(
w j i p j (t) − wi j pi (t)

) =
∑

j

J ji (t). (1)

Here pi (t) is the probability to find the system in i-th state at time t , wi j is the time-
independent i → j transition rate and Ji j (t) is the flux associated with the transition
defined as

Ji j (t) = wi j pi (t) − w j i p j (t) = −J ji (t). (2)

In the long-time limit, the system reaches a SS characterized by the PD {ps
i }. We do

not assume the condition of DB

wi j ps
i = w j i ps

j (3)

at the outset. It is well-known in the field of stochastic non-equilibrium thermodynam-
ics that the total EPR of such a system has the form (setting the Boltzmann constant
kB = 1) [11]

Ṡtot(t) = 1

2

∑

i, j

(
wi j pi (t) − w j i p j (t)

)
ln

wi j pi (t)

w j i p j (t)
≥ 0. (4)
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The inequality in Eq. (4) holds for an NESS, while the equality is valid at TE where
Eq. (3) holds. An alternative way is to write Eq. (4) as a product of fluxes Ji j and their
corresponding forces Xi j [4,6,14]:

Ṡtot(t) = 1

2

∑

i, j

Ji j (t) Xi j (t), (5)

where the logarithmic term in Eq. (4) refers to Xi j (t).
Now, we define deviations in the state probabilities from their corresponding SS

values by

δi (t) = pi (t) − ps
i . (6)

Using Eq. (6), one can split the flux Ji j (t) into a time-independent part J̄i j and a
time-dependent part ji j (t) as

Ji j (t) = J̄i j + ji j (t). (7)

In Eq. (7)

J̄i j = wi j ps
i − w j i ps

j , (8)

ji j (t) = wi jδi (t) − w j iδ j (t). (9)

It is interesting to see that J̄i j vanishes when DB holds. Thus, J̄i j represents the steady
driving that is a characteristic of the NESS. At SS, it follows from Eq. (1) that

∑

j

J̄ j i = 0 =
∑

j

J̄i j . (10)

Using Eq. (10), we obtain a very important property, viz.

∑

i, j

fi (t) J̄i j =
∑

i

fi (t)
∑

j

J̄i j = 0 =
∑

j

f j (t)
∑

i

J̄i j (11)

where fi (t) is any arbitrary quantity depending on the state-index i. As a corollary,
we can write ∑

i, j

fi j (t) J̄i j = 0 (12)

whenever fi j (t) satisfies
fi j (t) = α fi (t) + β f j (t), (13)

with any constants α, β. We will see the significance of Eqs.(11) and (12) later that
also provides a sound motivation behind the decomposition of the total flux. The time-
dependent part of the flux, ji j (t), represents the irreversible approach of the system
towards the SS and vanishes at the SS irrespective of whether it is an NESS or a TE.
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In a similar manner, the force Xi j can be decomposed into time-independent and
time-dependent parts as

Xi j (t) = X̄i j + χi j (t) (14)

where

X̄i j = ln
wi j ps

i

w j i ps
j
, (15)

χi j (t) = ln
pi (t)ps

j

p j (t)ps
i

= ln
1 + δi/ps

i

1 + δ j/ps
j
. (16)

The final step of Eq. (16) is obtained by using Eq. (6). It follows that, when DB holds,
X̄i j = 0 by virtue of Eq. (3). Hence, the steady driving is due to this part of the total
force. So, it is naturally the conjugate force of the flux J̄i j . Similarly, χi j (t) is the
conjugate force of the flux ji j (t) and vanishes at any SS. We may mention here that
the partitioning in Eq. (14) is similar in spirit to the splitting of the total force into
adiabatic and nonadiabatic contributions in presence of zero or a constant external
driving [14].

Let us now ask: Are the two components of flux linearly related to their correspond-
ing components of force, even when one is near SS? To explore, we define a parameter
ε′

i j as

ε′
i j = wi j ps

i

w j i ps
j

= 1 + εi j . (17)

When DB holds, one gets ε′
i j = 1,∀ i, j , from Eq. (3). Thus, ε′

i j measures the extent
of DB violation. A few important results now follow:

A. Choose first the case of time-independent flux and force. Using Eqs. (8) and (17),
J̄i j can be expressed as

J̄i j = w j i ps
jεi j . (18)

From Eqs. (15), (17) and (18), one can write in a similar way

X̄i j = ln(1 + εi j ) ≈ εi j for εi j � 1. (19)

Now εi j � 1 implies a small deviation from DB. Only under this condition, from
Eqs. (18) and (19), we get

J̄i j = w j i ps
j X̄i j . (20)

Otherwise, the simple linearity between J̄i j and X̄i j is lost.
B. Near a SS, from Eqs. (6) and (16), the time-dependent force χi j (t) can be written

as
χi j (t) �

(
δi/ps

i − δ j/ps
j

)
. (21)

Using Eqs. (9), (17) and (21), we get the desired relation between ji j (t) and χi j (t)
as

ji j (t) = w j i ps
jχi j (t) + w j i ps

jεi j

ps
i

δi (t). (22)
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It suggests that, near a SS, ji j (t) is not linearly proportional to χi j (t). It will be so
only near a TE (where DB holds, i.e., εi j = 0).

C. From Eqs. (7), (14), (20) and (22), the total flux Ji j (t) near a SS becomes

Ji j (t) = w j i ps
j Xi j (t) + w j i ps

jεi j

ps
i

δi (t). (23)

Thus, Ji j becomes linearly proportional to Xi j only near a TE. The breaking of
linearity near a SS is contained in the final term at the r.h.s. of Eq. (23) that gives
the extent of DB violation.

3 Partitioning of total EPR

From Eqs. (4), (7) and (14), the total EPR can be expressed as

Ṡtot(t) = 1

2

∑

i, j

(
J̄i j X̄i j + J̄i jχi j (t) + ji j (t)X̄i j + ji j (t)χi j (t)

)
, (24)

where components of time-independent and time-dependent flux and force are explic-
itly seen. From Eqs. (8), (9), (15) and (16), the steady value of total EPR is given
as

Ṡs
tot = 1

2

∑

i, j

J̄i j X̄i j ≥ 0. (25)

Again, the inequality in Eq. (25) holds for an NESS and the equality holds for a TE.
The following properties of the components are already known in the literature in the
context of adiabatic and nonadiabatic EPRs [14]:

∑

i, j

(
J̄i j + ji j (t)

)
X̄i j =

∑

i, j

Ji j (t)X̄i j ≥ 0. (26)

∑

i, j

Ji j (t)χi j (t) ≥ 0. (27)

We find from Eq. (16) that

χi j (t) = ln
pi (t)

ps
i

+ ln
ps

j

p j (t)
.

This is of the form given in Eq. (13) with α = β = 1. Hence, we obtain

∑

i, j

J̄i jχi j (t) = 0. (28)
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Then, from Eqs. (27) and (28), one finds

∑

i, j

ji j (t)χi j (t) ≥ 0. (29)

Now we shall study the behavior of the total EPR close to SS, taking the various
flux-force products, as given at the r.h.s. of Eq. (24). Using Eqs. (9) and (22), one can
write the fourth term of Eq. (24) as

ji j (t)χi j (t) = j2
i j (t)

w j i ps
j

− εi jji j

ps
i

δi (t)

= Pi jδ
2
i (t) + Qi jδ

2
j (t) + Ri jδi (t)δ j (t), (30)

where

Pi j = w2
i j

w j i ps
j

− wi jεi j

ps
i

, (31)

Qi j = w j i

ps
j
, (32)

Ri j = w j iεi j

ps
i

− 2wi j

ps
j

. (33)

Hence, the term ji j (t)χi j (t) is quadratic in the probability deviations δi (t) near a SS.
Interestingly, it remains so even for εi j = 0, i.e., near a TE.

The third term in Eq. (24) can be rewritten as

ji j (t)X̄i j = Si jδi (t) − Ti jδ j (t), (34)

where we employ Eq. (9) and define

Si j = wi j X̄i j , (35)

Ti j = w j i X̄i j . (36)

The r.h.s. of Eq. (34) is linear in the probability deviations δi (t). Note that, in writing
Eq. (34), we do not require δi to be small. Actually, we consider the near-SS situation
(i.e., δi/ps

i � 1) only for those quantities which depend on χi j (t).
As the term J̄i j X̄i j is time-independent, the total EPR comprises of a constant term,

a linear one and a quadratic one in δi (t) near a SS. From Eqs. (24), (28), (30) and (34),
the desired expression in terms of δi (t) is written as

Ṡtot(t) = 1

2

∑

i, j

[
J̄i j X̄i j + (

Si jδi (t) − Ti jδ j (t)
)

+
(

Pi jδ
2
i (t) + Qi jδ

2
j (t) + Ri jδi (t)δ j (t)

)]
. (37)
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The origin of each term is, by now, clear.

4 Behavior of state and path functions

When a system reaches a TE, we have J̄i j = 0 = X̄i j . Then, it follows from Eqs.
(35), (36) and (37) that Ṡtot(t) is purely quadratic in δi (t) near a TE. Here, the whole
contribution to Ṡtot(t) comes from the product of time-dependent fluxes and forces.
As the total EPR for a system reaching TE multiplied by temperature T equals the
negative of the rate of free energy change Ḟ(t) of the system, we can write

− Ḟ(t) = T

2

∑

i, j

ji j (t)χi j (t). (38)

Therefore, it follows from Eq. (30) that, Ḟ(t) is quadratic in δi (t) near a SS but it
vanishes at the SS, as expected for a state function.

Next, we take the combination of the first and the third terms of total EPR at the r.h.s.
of Eq. (24). It represents what is known in the literature as the adiabatic component
of the total EPR and is identical to the ‘housekeeping heat’ when multiplied by the
temperature T . With time-independent transition rates, the ‘housekeeping heat’ is the
same as the rate of irreversible work done wirr(t) on the system to keep it away from
any TE [15]. We thus get

wirr(t) = T

2

∑

i, j

(
J̄i j X̄i j + ji j (t)X̄i j

)
. (39)

This result, along with Eq. (34), shows wirr(t) is linear in δi (t) and it is true for all
time, since we do not assume δi (t) to be small in writing Eq. (34). The constant first
term in wirr(t) gives its value at the SS. It is zero at a TE.

More commonly, the total EPR is split into system and medium contributions in
the following way:

Ṡtot(t) = Ṡsys(t) + Ṡm(t). (40)

Here, the medium EPR is given by

Ṡm(t) = 1

2

∑

i, j

(
J̄i j + ji j (t)

)
ln

wi j

w j i
= hd(t)/T (41)

where hd(t) is the heat dissipation rate. Note that, similar to wirr , hd is also linear in
δi (t) for all time. The constant part is the value of hd at the SS that vanishes at a TE.
Using Eqs. (6) and (16), the system EPR becomes

Ṡsys(t) = 1

2

∑

i, j

(
J̄i j + ji j (t)

)
ln

pi (t)

p j (t)

= 1

2

∑

i, j

(
J̄i j ln

ps
i

ps
j

+ J̄i jχi j (t) + ji j (t)ln
ps

i

ps
j

+ ji j (t)χi j (t)

)
. (42)
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On the basis of Eq. (12), the first term in the sum of Eq. (42) becomes zero, i.e.,

∑

i, j

J̄i j ln
ps

i

ps
j

= 0. (43)

This is expected because the system entropy is a state function, and so Ṡsys must vanish
at SS. It has already been shown that the second term of the sum in Eq. (42) is also
zero by virtue of Eq. (28). Thus, the system EPR reduces essentially to

Ṡsys(t) = 1

2

∑

i, j

(
ji j (t)ln

ps
i

ps
j

+ ji j (t)χi j (t)

)
. (44)

From Eqs. (9) and (30), one now finds that Ṡsys(t) has a linear as well as a quadratic
term in δi near a SS, both of which vanish at SS. Also, using Eqs. (15) and (43) in Eq.
(24), we get

Ṡtot(t) = 1

2

∑

i, j

(
J̄i j ln

wi j

w j i
+ ji j (t)ln

wi j

w j i
+ ji j (t)ln

ps
i

ps
j

+ ji j (t)χi j (t)

)

= Ṡm(t) + Ṡsys(t) (45)

where we have used Eqs. (41) and (44) in the last step. Equation (45) unifies the
description of the various EPRs in terms of the time-dependent and time-independent
fluxes and forces.

Finally, the rate of internal energy change U̇ (t) of the system is obtained from wirr
and hd using a first-law like relation

U̇ (t) = wirr(t) − hd(t)

= T

2

∑

i, j

(
J̄i j ln

ps
i

ps
j

+ ji j (t)ln
ps

i

ps
j

)
= T

2

∑

i, j

ji j (t)ln
ps

i

ps
j
. (46)

Here, in the final step, we have used Eq. (43). Thus, U̇ (t) is linear in δi (t) for all time
and becomes zero at any SS.

5 An application: a two-level system attaining NESS

A two-level system with multiple transition pathways is shown schematically in
Fig. 1. The system can go from state 1 to state 2 via two routes having rate con-
stants k1 and k2. The opposite transition also takes place via another two paths with
rate constants k−1 and k−2. The kinetic equations of the state probabilities pi (i = 1, 2)

are given by
ṗ1(t) = −(K1 + K2)p1(t) + K2 (47)
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Fig. 1 Schematic diagram of a
two-level system that can
support NESS

k1

k k−1

1 2 21 1
2

k −2

K 2

K1

where K1 = k1 + k2, K2 = k−1 + k−2 and we have used p2 = 1 − p1. Equation (47)
is exactly solvable. For the initial condition p1(t = 0) = 1, the solution is

p1(t) = 1 − p2(t) = 1

K

(
K2 + K1e−K t

)
. (48)

Here K = K1 + K2. The system will reach NESS with a non-zero total EPR except
when DB is satisfied with

k1k−2

k−1k2
= 1. (49)

When Eq. (49) holds, the system attains the TE. At NESS, setting ṗ1 = 0 in Eq. (47),
we get

k1 ps
1 − k−1 ps

2 = k−2 ps
2 − k2 ps

1 = J̄ . (50)

For this two-level system, the deviations of probabilities from their respective NESS
values are given as

δ1(t) = p1(t) − ps
1 = ps

2 − p2(t) = −δ2(t) = δ(t). (51)

Since p1(t) decreases monotonically to ps
1 [see Eq. (48)], δ(t) ≥ 0 in Eq. (51). The

total EPR in this system is written as

Ṡtot(t) =
∑

i=1,2

(ki p1(t) − k−i p2(t)) ln
ki p1(t)

k−i p2(t)
. (52)

Hence, by using Eqs. (50) and (51), the total EPR near NESS becomes

Ṡtot(t) = J̄ ln
k1k−2

k−1k2
+

(
(k1 + k−1)ln

k1 ps
1

k−1 ps
2

− (k2 + k−2)ln
k−2 ps

2

k2 ps
1

)
δ

+ K

(
1

ps
1

+ 1

ps
2

)
δ2. (53)

This is in conformity with the general behavior found in Eq. (37). It is evident that when
DB holds, the total EPR vanishes at NESS according to Eq. (49) and the system reaches
TE. We also clarify that, as the system is exactly-solvable, all the thermodynamic
quantities can be determined without any approximation. But, we consider the near-
NESS situation to compare the results with those derived in previous sections for a
general network.
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The adiabatic component of the total EPR reads as

wirr(t)/T = J̄ ln
k1k−2

k−1k2
+

(
(k1 + k−1)ln

k1 ps
1

k−1 ps
2

− (k2 + k−2)ln
k−2 ps

2

k2 ps
1

)
δ. (54)

Equation (54) is valid for all time, as already pointed out. The rate of free energy
change near NESS then becomes

− Ḟ(t)/T = K

(
1

ps
1

+ 1

ps
2

)
δ2. (55)

Following a similar procedure, the medium EPR becomes

Ṡm(t) = hd(t)/T = J̄ ln
k1k−2

k−1k2
+

(
(k1 + k−1)ln

k1

k−1
− (k2 + k−2)ln

k−2

k2

)
δ (56)

for all time. The system EPR near NESS is written as

Ṡsys(t) =
(

K ln
ps

1

ps
2

)
δ + K

(
1

ps
1

+ 1

ps
2

)
δ2. (57)

Thus, the rate of internal energy change for all time becomes

U̇ (t)/T = wirr(t)/T − hd(t)/T =
(

K ln
ps

1

ps
2

)
δ. (58)

Analyzing these results, we summarize below our observations:

A. When DB holds, we get

Ṡtot(t) = −Ḟ(t)/T = K

(
1

ps
1

+ 1

ps
2

)
δ2. (59)

B. From Eq. (50), if J̄ > 0 then k1 ps
1 > k−1 ps

2, k−2 ps
2 > k2 ps

1. Similar results hold
for J̄ < 0. So, the first and the second terms in the coefficient of δ in Eq. (53) are
either both positive or both negative. Hence, the coefficient itself can be positive
or negative. With δ ≥ 0, there is scope for the total EPR to get decreased from its
NESS value. The same is true for wirr(t) given in Eq. (54).

C. Inspection of Eq. (48) reveals that, for K1 < K2, the curve of p1(t) versus t
cannot intersect that of p2(t) versus t . Then, ps

1 > ps
2 and, from Eq. (58), we get

U̇ (t) ≥ 0. In this case, a part of the irreversible work done on the system increases
its internal energy and the rest gets dissipated as heat to the medium. However,
for K1 > K2, the curves do cross, so ps

1 < ps
2 and U̇ (t) ≤ 0. Here, the heat

dissipation to the medium is greater than the irreversible work done on the system
and the energy balance occurs by reduction of the internal energy of the system.
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D. When ps
1 = ps

2 = 1/2, i.e., we have a uniform SS distribution, Eqs. (55), (57) and
(58) lead us to

Ṡsys(t) = −Ḟ(t)/T = 4K δ2, (60)

U̇ (t)/T = wirr(t)/T − hd(t)/T = 0. (61)

Hence, in this case, the irreversible work done on the system gets totally dissipated
as heat and system’s internal energy remains unchanged. Also, for a uniform steady
distribution, the entropy change of the system is maximum and the free energy change
is minimized. In the following, we will discuss when such a situation can arise.

(i) Equation (48) yields the condition K1 = K2 for the NESS with a uniform distri-
bution. From their definitions, we find that three rate constants out of four can be
varied independently.

(ii) The uniform distribution can also occur at any TE when k−1 = k1, k−2 = k2
[see Eqs. (49), (50)]. This means, there are two independent rate constants for the
system. However, the conditions on the backward rate constants to be identical
with the corresponding forward ones are highly restrictive and seem accidental
for processes involving chemical reactions. Thus, a uniform distribution with
maximum entropy production and minimum free energy change is much more
likely to occur in a non-equilibrium set up.

6 Conclusion

Starting from a master equation description of the system without assuming DB, here
we have decomposed the fluxes and the corresponding forces into time-independent
and time-dependent portions. The relationships among these components near any
arbitrary NESS are in general, nonlinear. We have shown that (i) both the time-
dependent and time-independent parts of the flux are linearly proportional to their
conjugate parts of the force only near a TE [Eqs. (20), (22), (23)]. (ii) The total EPR
consists of direct and cross-products of these fluxes and forces. Analysis of their
behavior provides a thorough understanding on the evolution and sustenance of irre-
versibility in the system. (iii) A clear identification of the components of flux and force
with certain state functions and path functions of the system is possible [Eqs. (38),
(39), (41), (42) and (46)]. More importantly, we have determined how these functions
will vary as one moves away from a SS. (iv) Although we have focused on a near-SS
situation, the variations of the rate of irreversible work done, the heat dissipation rate
and the rate of internal energy change turn out to be independent of the extent of
deviation from the SS. Incidentally, all these three quantities emerge from the first law
of thermodynamics.

Applying our methodology to a two-level system sustaining NESS, we have found
how the system parameters govern the utilization of the irreversible work done on the
system. This is indeed linked with the heat dissipation to the medium and internal
energy change of the system. Depending on the relative magnitudes of the transitions
rates, the internal energy change can either be positive or negative. This helps us in

123



2270 J Math Chem (2014) 52:2259–2270

understanding the mechanism of energy expenditure. We have also shown the advan-
tage of a non-equilibrium scenario in the context of realizing a minimized free energy
state.
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